Functions On Symbols

Data integration is a complex problem with many facets. From a semiotic point of view, quite a lot of human cognitive and communicative processing capabilities is involved in the resolution. This post is entering the discussion at a point where a number of necessary terms and concepts have not yet been described on this site. Stay tuned, as I will begin to flesh out these related ideas.

You may also find one of my permanent pages on functions to be helpful.

A Symbol Is Constructed

Recall that we are building tautologies showing equivalence of symbols. Recall that symbols are made up of both signs and concepts.

If we consider a symbol as an OBJECT, we can diagram it using a Unified Modeling Language (UML) notation. Here is a UML Class diagram of the “Symbol” class.

UML Diagram of the "Symbol" Object

UML Diagram of the "Symbol" Object

The figure above depicts how a symbol is constructed from both a set of “signs” and a set of “concepts“. The sign is the arrangement of physical properties and/or objects following an “encoding paradigm” defined by the members of a context. The “concept” is really the meaning which that same set of people (context) has projected onto the symbol. When meaning is projected onto a physical sign, then a symbol is constructed.

Functions Impact Both Structure and Meaning

Symbols within running software are constructed from physical arrangements of electronic components and the electrical and magnetic (and optical) properties of physical matter at various locations (this will be explained in more depth later). The particular arrangement and convention of construction of the sign portion of the symbol defines the syntactic media of the symbol.

Within a context, especially within the software used by that context, the same concept may be projected onto many different symbols of different physical media. To understand what happens, let’s follow an example. Let’s begin with a computer user who wants to create a symbol within a particular piece of software.

Using a mechanical device, the human user selects a button representing the desired symbol and presses it. This event is recognized by the device which generates the new instance of the symbol using its own syntactic medium, which is the pulse of current on a closed electrical circuit on a particular wire. When the symbol is placed in long term storage, it may appear as a particular arrangement of microscopic magnetic fields of various polarities in a particular location on a semi-metalic substrate. When the symbol is in the computer’s memory, it may appear as a set of voltages on various microscopic wires. Finally, when the symbol is projected onto the computer monitor for human presentation, it forms a pattern of phosphoresence against a contrasting background allowing the user to perceive it visually.

Note through all of the last paragraph, I did not mention anything about what the symbol means! The question arises, in this sequence of events, how does the meaning of the symbol get carried from the human, through all of the various physical representations within the computer, and then back out to the human again?

First of all, let’s be clear, that at any particular moment, the symbol that the human user wanted to create through his actions actually becomes several symbols – one symbol for each different syntactic representation (syntactic media) required for it to exist in each of the environments described. Some of these symbols have very short lives, while others have longer lives.

So the meaning projected onto the computer’s keyboard by the human:

  • becomes a symbol in the keyboard,
  • is then transformed into a different symbol in the running hardware and operating system,
  • is transformed into a symbol for storage on the computer’s hard drive, and
  • is also transformed into an image which the human perceives as the shape of the symbol he selected on the keyboard.

But the symbol is not actually “transforming” in the computer, at least in the conventional notion of a thing changing morphology. Instead, the primary operation of the computer is to create a series of new symbols in each of the required syntactic media described, and to discard each of the old symbols in turn.

It does this trick by applying various “functions” to the symbols. These functions may affect both the structure (syntactic media) of the symbol, but possibly also the meaning itself. Most of the time, as the symbol is copied and transferred from one form to another, the meaning does not change. Most of the functions built into the hardware making up the “human-computer interface” (HCI) are “identity” functions, transferring the originally projected concept from one syntactic media form to another. If this were not so, if the symbol printed on the key I press is not the symbol I see on the screen after the computer has “transformed” it from keyboard to wire to hard drive to wire to monitor screen, then I would expect that the computer was broken or faulty, and I would cease to use it.

Sometimes, it is necessary/desirable that the computer apply a function (or a set of functions called a “derivation“) which actually alters the meaning of one symbol (concept), creating a new symbol with a different meaning (and possibly a different structure, too).

Charting The Semantic Stream

…what Man touches, he stains with meaning…
…it flows like water, permeating everything…

Each computer system presents a different view of the world. Like water sitting in bottles, bowls and buckets with different shapes, meaning fills every available nook and cranny. But just as there are not enough bottles to hold all of the water of the world, no system can hold all of the meaning man can project.

This site is dedicated to capturing my ideas regarding the movement of concepts through human-defined artifacts. The goal is to capture an impression of the nature and properties of meaning and symbol, and to discover and map how meaning flows – what changes and what remains constant – as it passes from one end of civilization to the other.

%d bloggers like this: