Example of How Meaning Is Attached to Structure

What follows is a detailed example of the thought process followed by a software developer to create a class of data structures and how meaning is attached to those structures.

Consider that the meaning of one data structure may be composed of the collection of meanings of a set of smaller structures which themselves have meaning. Take the following description as the meaning to be represented by a structure:

An employee is a human being or person. Each employee has a unique identity of their own. Each employee has a name, which may be the same as the name of a different person or employee. Being human, each employee has an age, calculated by counting the number of years since they were born up to some other point in time (such as present day).Each person of a certain age may enter into a marriage with another human being, who in turn also has their own identity and other attributes of a person.

To represent this information using data structures (i.e., to project the meaning of this information onto a data structure), we might tie the various concepts about a human being/employee to a computer-based data structure. Recognizing that a human being is an object with many additional characteristics of which we might want to know about, we might choose to project the concept of “human beings” or “people” onto a relational table and the concept of a particular individual onto one of that table’s rows (or a similar record structure).

This table would represent a set of individual human beings, and onto each row of the table would be projected the meaning of a particular human being. Saying this again in a more conventional manner, we would say that each row of the table will reference a singular and particular human being, the all of the rows will represent the set of all human beings we’ve observed in the context of our usage of the computer system.

In a more mathematical vein, we would define a projection Þ from the set of actual human beings Α onto Š, (Þ(Α) |–> Š), the set of data structures such that for any α in Α where α is a human being, there is a record or row σ in Š that represents that human being.

A record data structure being a conglomeration of fields, each of which can symbolically represent some attribute of a larger whole, then we might project additional attributes of the human being, such as their name and identifier, to particular fields within the record. If σ is the particular record structure representing a particular human being, α, then the meaning (values) of the attributes of that person could be associated with the fields, f1..fn, of that record through attribute-level projections, ψ1..ψn for attributes 1 .. n.

To represent a particular person, first we would project the reference to the person to a particular row, Þ(α) |–> σ, then we would also project the attribute facts about that person onto the individual fields of that row:

ψ1(α.1) |–> σ.f1

ψn(α.n) |–> σ.fn

Projection onto Relational Structure

When modeling a domain for incorporation into computer software, the modeler’s task is to define a set of structures which software can be written to manipulate. When that software is to use relational database management systems, then the modeler will first project the domain concepts onto abstract relational structures defined over “tuples”. These abstract structures have a well-defined mathematical nature which if followed provides very powerful manipulations. The developer projects meaning onto relations in a conventional way, such as by defining a relation of attributes to represent “PERSON” – or the set of persons, and another relation of attributes to represent “EMPLOYEE” – or the set of persons who are also employees. Having defined these relational sets, the relational algebra permits various mathematical operations/functions to be applied, such as “JOIN” and “INTERSECTION”. These functions have strictly defined properties and well-defined results over arbitrary tuples. The software developer having projected meaning onto the individual relations, he is also therefore able to project meaning on the outcomes of these operations which can then be used to manipulate large sets of data in an efficient, and semantically correct way.

As the developer creates the software however, they must keep in mind what these functions are doing on two levels, at the level of the set content and at the level of the represented domain (the referent of the sets and manipulations). Thus the intersection of the PERSON and EMPLOYEE relations should produce the subset of tuples (records, etc.) which has its own meaning derived from the initial projected meaning of the original sets. Namely, this intersection represents the set of PERSONS who are also EMPLOYEES, (which is the same, alternatively, as the set of EMPLOYEES who are also PERSONS). This is an important point about software: the meaning is not simply recorded in the data structure but the manipulations of the data by the computer themselves have specific connotations and implications on the meaning of data as it is processed.

Representational Redundancy

As a typical practice in the projection of information onto data structures within the relational model, there will usually be a repetition of the information projected onto more than one symbol. In particular, the reference to the identity of a single person will be represented both by the mere existence of a single row in the table, and also by a subset of fields on the row which the software developers have chosen (and which the software enforces) for this purpose. In other words, under common software development practices, each record/row as a conglomerate entity will represent a single person. In addition, there will be k attributes (1 <= k <= n) on that record structure whose values in combination also represent that same individual. These k attributes make up the “primary key” of the data structure. The software developer will use and repeat these columns on multiple data structures to permit additional concepts regarding the relationship between that person and other ideas also being recorded. For example, a copy of one person record’s primary key could be placed on another person record and be labelled “spouse”. The attributes which make up the primary key often have less mechanical meanings as well (for example, perhaps the primary key for our person includes the name attribute. As part of the primary key, the name value of the person merely helps to reference that person. It also in its own right represents the name of the person.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: